Quadratic probing is a technique used in hash tables to resolve collisions that may occur when two keys hash to the same index. When a collision occurs, instead of placing the new key-value pair in the next available slot, quadratic probing calculates a new position by incrementing the current position by a quadratic function.
The new position is calculated using the formula: (hash(key) + c1 * i + c2 * i^2) % table_size, where hash(key) is the original index of the key, c1 and c2 are constants, i is the iteration count, and table_size is the size of the hash table.
Quadratic probing is preferred over linear probing because it helps to reduce clustering, a phenomenon where keys tend to cluster together in the hash table. However, quadratic probing can still suffer from clustering as it may not always find an empty slot after a collision.
Overall, quadratic probing is a simple and efficient collision resolution technique that is commonly used in hash tables to handle collisions.
Ne Demek sitesindeki bilgiler kullanıcılar vasıtasıyla veya otomatik oluşturulmuştur. Buradaki bilgilerin doğru olduğu garanti edilmez. Düzeltilmesi gereken bilgi olduğunu düşünüyorsanız bizimle iletişime geçiniz. Her türlü görüş, destek ve önerileriniz için iletisim@nedemek.page